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Finite-size rounding of first-order transitions is studied for the general case of 
nonsymmetric phases and nonperiodic boundary conditions. The main features 
include the surface-induced shift of the rounded transition on the scale 1/L, 
while the order parameter discontinuity is rounded on the scale 1/L d. This 
rounding is described by the universal scaling forms with scaling functions 
identical to those for the periodic, symmetric case. The proposed formalism 
applies to scalar-order-parameter, single-domain systems. It is tested by exact 
calculations for a class of infinite-range models. 

KEY WORDS:  Finite-size scaling; rounded transitions; surface effects; phase 
coexistence. 

1. I N T R O D U C T I O N  

Recent experimental and numerical  Monte  Carlo studies have focused 
interest on finite-system-size effects at first-order phase transitions with no 
symmetries between the phases and with nonperiodic  boundary  conditions. 
Indeed, earlier theoretical developments usually assumed periodic boundary 
conditions and were largely limited to Ising or  other  ferromagnetic systems 
with symmetric phases (see refs. 1-4 and reviews in Chapters  1, 4, and 5 of 
ref. 5). 

Detailed studies of  the scaling forms of  the rounded nonsymmetr ic  
transitions (with periodic boundary  condit ions) used the formalism of the 
probabil i ty density of  the order  parameterJ  2'6) Some of the unsolved 
theoretical issues associated with these studies have been reviewed in Chap-  
ter 1 of  ref. 5. Fer romagnet ic  Ising transitions can also become effectively 
nonsymmetr ic  if the bounda ry  conditions are  nonperiodic  and involve 
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surface fields. Finite-size transition point shifts in the slab geometry were 
investigated for such systems in ref. 7, by using mean-field type considera- 
tions. However, in this paper we consider fully finite systems so that the 
transition is not only shifted but also rounded. ~8~ Also, we study only the 
case of scalar order parameter, thus excluding from the consideration 
soft-mode (spin-wave) effects, which are known to lead to a qualitatively 
different finite-size behavior. (4) 

It turns out that the most important boundary condition and 
geometry effects are associated with the formation of interfaces in the bulk 
of the finite system (i.e., away from the surfaces). If the interfaces are for- 
med spontaneously, as happens in the long cylindrical geometries, ~ or 
are imposed by the boundary fields of opposite sign, (9) then the system is 
multidomain and the scaling form of the rounded transition is qualitatively 
different from the single-domain case. 

For single-domain systems, which are considered in this work, it turns 
out that the scaling form of the rounding is not affected by boundary 
effects, etc. However, the (rounded) transition is shifted from its bulk 
(infinite size) value. (8) Most numerical and experimental results have been 
obtained for single-domain systems. Specifically, nonsymmetric first-order 
transitions in some 2d, q > 4 Potts models (with periodic boundary condi- 
tions) were studied by Monte Carlo methods. (6'1~ More recent Monte 
Carlo studies have focused on 2D Ising-type systems in rectangular 
geometries with free and applied-surfaee-field boundary conditions. (H'~2) 
These and other theoretical studies (e.g., refs. 13 and 14) also addressed 
surface-induced transition point shifts of order 1/L in the "slab" (i.e., thin 
film in 3D) and "strip" (in 2D) geometries, (7) where L is a characteristic 
system size. 

Experimental results available are less definitive. Finite-size rounding 
and surface-effect-related transition point shifts have been observed in 
several experiments (e.g., refs. 15-18). 3 Results in 3D (15-17) indicate clear 
"surface" 1/L shifts. However, no fits to the theoretical scaling forms have 
been attempted. The 2D study of ref. 18 reports the first experimental fit of 
the rounded-transition data to a scaling form. 

In this work we reconsider and systematize (in Sections2-4) the 
available theoretical information ~2"5'6'8'19-21) on finite-size effects at nonsym- 
metric first-order transitions (in systems with periodic boundary condi- 
tions) and also extend the formulation (in Sections 2 and 3) to allow for 
nonperiodic boundary conditions. (8) We then test (in Sections 5 and 6) 
several aspects of the proposed formalism in the case of exactly solvable 
infinite-range models. 

3 Ref. 18 also provides further references for studies of first-order transitions in adsorbed 
monolayers. 
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2. P A R T I T I O N  F U N C T I O N  NEAR P H A S E  C O E X I S T E N C E  

Coexistence of I discrete phases is marked by their bulk free energies 
(which we measure per unit volume and per kBT ) being equal. Let 
flb)({J}) ( i = 1 , 2  ..... I) denote these single-phase bulk ( L = o o )  free 
energies, which become equal at {Jc}, where {J} denotes collectively 
various externally controlled thermodynamic variables such as the applied 
field H, the temperature T, etc. We assume large finite systems in the sense 
that oo >L~> ~I b), wi th  ~Ib__)l...,i denoting the bulk single-phase correlation 
lengths, which are finite near and at {Jc}, because we do not consider 
systems with soft modes due to continuous symmetries. (4) As emphasized in 
Section 1, for a large class of boundary conditions the most probable con- 
figurations are single domain, i.e., if any interfaces exists, they are bound 
near the surfaces and do not "unbind" into the bulk of the finite sample. 
We consider only such systems here (see refs. 1, 3, 5, and 9 for other 
possibilities and for further references). The "single-domain" property does 
not imply that the multiphase configurations are not possible, but that the 
"uniformly magnetized" states dominate the partition function sum; see, 
e.g., refs. 1 and 5. 

Let V denote the finite system volume, so that we can conveniently put 

V = L  d (2.1) 

With the above conventions and assumptions, it is natural to consider the 
following phenomenological expression for the partition function Z near 
{Jc}: 

Z - ~ e -  v~((J},L) (2.2) 
i=1 

where the L dependence of the free energies also implicitly indicates the 
boundary condition, shape, and other geometrical feature dependences. We 
generally expect that 

lim f~(L)= f l  b) (2.3) 
L~oo 

A replacement o f f , (L)  by .Ji(f(b)'k-corrections) in (2.2) is a natural step in 
deriving the finite-size scaling behavior. It is therefore important to 
investigate the form of these finite-L corrections, i.e., the L dependence of 
the differences 

A f,- = f~ (L) - - f l  b) (2.4) 
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These differences may be viewed as sources of "prefactors" in the sum of 
terms of the form e x p ( -  Vf l  b~) [compare (2.2)]. Such finite-size prefactors 
will be discussed in detail in Sections 3, 4, and 6. 

Before addressing this issue, it is useful to remark on yet another 
technical point related to (2.2). Each bulk free energy  f l  b) is, strictly 
speaking, defined only for the range of parameters {J} for which the ith 
phase is stable (i.e., when this free energy is minimal, at least, in the mean- 
field description). Extension of the thermodynamic definition to the 
metastable regions is hampered by essential singularities (see, e.g., 
refs. 22-25). However, as emphasized in Chapter 1 of ref. 5, in finite-size 
analysis one only uses the first few terms of the expansion offlb)({J}) near 
{Jc}, so that the problem of the continuation does not really arise, because 
one essentially manipulates polynomials in { J - J c } .  

In order to avoid notational complications, we will consider only the 
case of the two-phase coexistence, i.e., we take I = 2 in the remainder of this 
work. Extensions to I >  2 are quite straightforward, but cumbersome, and 
the two-phase case is sufficient to illustrate all the important aspects of the 
formalism. It is convenient to use a magnetic-type notation. Thus, we single 
out one parameter h from the set { J - J c }  such that h can be regarded 
as an "applied field" variable driving the system through a first-order 
transition at h = 0, between the two phases i = 1 and i = 2. Near h = 0, we 
can expand 

1 ,v (b)h2  f~b)( h ) = / ( o  b)-m~ b)h+ 2La ,~ + "'" (2.5) 

l ,~ (b )h2  
f(2b)(h) = f~o b) -m~2 blh + ~ 2  ", + "'" (2.6) 

where, as mentioned, these series are not convergent, but this causes no 
difficulties in finite-size scaling relation derivations. [-Thermodynamic 
definitions of the "field" h appropriate for various systems and ensembles 
were described, e.g., in ref. 21.] 

3. SURFACE A N D  B O U N D A R Y  EFFECTS 

The free-energy quantities entering in the exponentials in (2.2) were 
not defined precisely. However, away  f r o m  the phase  transition we expect 
the contribution of the stable phase, say, i =  io, to dominate the partition 
function. The finite-size contributions to the single-phase free energy away 
from any phase transition point can be understood in terms of the standard 
bulk-surface-edge (in 3D)-corner terms. (26) Thus, for periodic boundary 
conditions the difference in (2.4) is exponentially small, 

Af~ o ~ e -  L/r (periodic) (3.1) 
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For free or fixed boundary conditions as well as for most other "single- 
domain" nonperiodic boundary conditions, the leading finite-size correc- 
tion will be of the form 

Af~o(h,L) =r176 (--~) L + 0 (nonperiodic) (3.2) 

where ~Oio(h) is proportional to the surface free energy density, while 
higher-order terms [-not shown explicitly in (3.2)] can be associated with 
geometrical features such as edges, corners, surface curvature, etc.: see 
Chapter 1 of ref. 5 for a detailed review. To be more specific, consider the 
case of a finite sample of surface area S, and assume that the boundary 
conditions (boundary fields, etc.) are uniform over the surface. The ratio 
s = V (d- 1)/d/S- L d- 1/S depends only on the system shape. The surface free 
energy density (per unit area and per ku T) of the ith phase, which is a 
"local" surface property, is then sq~i, provided q~i(h) is defined as in (3.2). 

Based on studies for periodic boundary conditions (m's'19,2~ (see 
below), we conjecture that the forms like (3.1) and (3.2) for Afe(h, L) apply 
also near and at h = 0. More specifically, we argue that the leading finite- 
size rounding for systems with surfaces can be described by replacing the 
free energy functions f,-(h, L) in (2.2) by 

(o) r 
f , (h,  L)  -~ f~o ~) - m~)h + 

L 
(3.3) 

where the accuracy can be improved by keeping a finite number of terms 
of higher order in h and 1/L. 

At this point we note that the discussion in this section has been quite 
general, and the fact that I =  2 was not implemented except in using h 
instead of more general system parameters {J-J~}.  However, in our 
derivation of explicit scaling results we will a s s u m e / =  2 to avoid overly 
cumbersome expressions. Furthermore, without loss of generality we 
assume that m~ b) > m] b), SO that phase 1 is stable for h < 0. We introduce 
the notation 

# -- �89 b)- m] b)) (3.4) 

1 t,,~(b) m~b)) (3.5) rn= ~t,,,2 q- 

~ p 2 ( o )  - q , l ( o )  
h c = h e ( L )  = L ( m ( b )  - m~b) ) (3.6) 
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With these conventions, substitution of (3.3) in relation (2.2) yields for the 
free energy near h = 0 the result 

1 ~o~(o) + q,~(o) 
f(h, L)= --~ln  Z"~ f(ob) ~ ffth 

v - 2L 

1 
vln{2 cosh[#(h - he) V] } (3.7) 

Thus, in addition to the (trivial) additive free energy surface correction of 
order 1/L, there is also the surface-induced shift he(L) in the scaling part, 
which describes the rounded kink in the free energy as a function of h. The 
average order parameter density m(h, L) follows from (3.7) as 

m(h,L) -  -#f/Oh~-r~+l~tanh{l~[h-hc(L)] V} (3.8) 

In this leading order of the scaling description, the order parameter discon- 
tinuity m~ b) -m~b)~ 2/~ is rounded on the scale ~ 1/V. Surface effects cause 
the shift (8/of order l/L, but the shape of the rounded order parameter, i.e., 
the hyperbolic-tangent scaling function, is the same as was found for sym- 
metric periodic Ising models. (~ 3,5) It is interesting to note that Hill's ther- 
modynamic "equal area rule" definition (2~) of the rounded transition shift 
is equivalent to (3.6) in the leading order (l/L). 

4. PERIODIC BOUNDARY CONDITIONS 

For systems with periodic boundary conditions the considerations of 
Section 3 suggest that in the expression for the partition function near 
the transition the exponentials of the bulk free energy add up with no 
prefactors, 

I 

Z -  ~ e x p [ -  Vflb)({J})] (periodic). (4.1) 
i = 1  

This is a rather surprising conclusion, and its implications are that there is 
no shift in the rounded transition in the case I =  2 (only), and that the only 
power-law finite-size free-energy correction at h = 0 is the - V- 1 In 2 term 
which separates out of the logarithm in (3.7). [In fact, for nonperiodic 
boundary conditions it should be dropped in a consistent O(1/L) 
approximation.] For general L this correction at {Jc} is given by 
- V  -1 In L As reviewed in Chapter 1 of ref. 5, the validity of the "no 
prefactor" property has been established by transfer matrix (19) (for I =  2) 
and rigorous (2~ methods. 

A detailed study of the finite-size behavior at first-order transitions can 



Nonsyrnmetric First-Order Transitions 557 

be also conducted within the formalism of the probability distribution 
P(M) of the fluctuating overall order parameter density M. (2'6) Note that 
the thermodynamic average value of M is the order parameter m encoun- 
tered in (3.8), etc. For h-~ 0, the function P(M) is sharply peaked at the M 
values near m] b) and m~2 b). The precise form of the peaks and of P(M) 
generally, has been extensively investigated (see, e.g., ref. 27). However, it 
is less clear how to "add up" two competing peaks. One approach (2) is to 
add them up with such coefficients that the areas under the peaks are equal 
at h = 0 (for the nonperiodic case, at he). This yields the "no prefactor" 
partition function. 

One can offer another line of argument (6) based on a certain mean- 
field intuition, which leads to a partition function expression with extra 
prefactors. We do not detail these considerations here, nor the attempts to 
reconcile both approaches by allowing for finite-size corrections in P(M) 
(see ref. 5 for details). It is important to point out, however, that the 
formulation of ref. 6 would suggest an additional shift in the transition, 
for periodic boundary conditions, proportional to V 1 ln(z(b)/z]b)). This shift 
would be rather small unless the transition is extremely nonsymmetric (so 
that the susceptibilities differ by several orders of magnitude). The use of 
the resulting scaling expressions to fit Monte Carlo data for Potts 
models (6'1~ showed no inconsistencies. 

Thus, although we believe that the "no prefactors" partition function 
is the correct answer, the final resolution of the controversy must await a 
reanalysis of the Monte Carlo data. Some of the features of the probability 
distribution for M will be clarified by exact calculations for infinite-range 
models in Section 6. Finally, we mention that controversies with prefactors 
for exponentiated free-energy quantities also arise in transfer matrix 
studies. (3,19) 

5. INFINITE-RANGE MODELS: DEFINITION 

Consider an infinite-range model of VIsing spins as = _+ 1. The model 
has no geometry and therefore the number of spins plays the role of the 
volume. Thus, we use the notation V, so that, formally, various ther- 
modynamic definitions and expressions obtained in Sections 2-4 remain 
unchanged. However, densities will be per spin instead of per unit volume. 
The configurational interaction energy of an infinite-range model is a 
function of 

v 

M = V  -1 ~ as (5.1) 
~ = 1  
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and is assumed to be of the form E(M)-  hM (measured per k B T). Note 
that M can take on a discrete set of values, M =  (2f l-V)/V,  where 

1 ..... v .  

The partition function of the model can be evaluated be summing over 
the allowed M values, with the appropriate multiplicity factor (~) counting 
the configurations with a given M. It is convenient to define the quantity 
t2(M, V) via 

e v a = ( f l V ) = v , / I ( ~ M - v ) , ( ~ - M - v ) ,  ] (5.2) 

The following expansion can be easily derived: 

I + M ,  I + M  1 - M  ~ l n V  
t2 = - - -~ - -  m - - - ~  + ~ - -  In + 2V 

+ In[(1 - M2)/27~-~] + 3 + M  2 
2V 1 2 ( 1 - M  2) V 2"4-0[V 4(1 - M2)-3]  (5.3) 

Although we cared to show the "dangerous" behavior of this expansion 
near M = _+1, it is actually of no importance, since we will be interested in 
M values near ,,(b) which should be in ( - 1 ,  1). The partition function "'~1,2 
takes the form 

1 Z = -  ~ e--VEV(M)--hM+"(M)/Vl{1 + O(V-I)} (5.4) 

where the bulk potential is defined by 

U(M) - t~(M, ~ ) + E(M) (5.5) 

while the leading correction can be read off (5.3), 

u(M) = 1 In 1 M 2 

2~-~ Z 
(5.6) 

Since the energy E(M) is basically arbitrary, and other quantities 
[such as u(M)] are also dependent on the type of the model, (21) we will 
keep the functions U(M) and u(M) general in what follows. For the bulk 

(b) such that potential U(M), however, we assume minima at M = m 1,2 

U(M~-rnlb))=f(ob)+ 1---~(M- (b) 2 2Z16) mi ) +O[(Am) 33 (5.7) 

and U(M)>f~o b) for .. eb) M #  ml, 2. In the following section, we will put f(ob)= 0 
for simplicity. We will not discuss explicitly the additive higher order terms 
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1/V, etc., in (5.4), which contribute O(V 2) terms in the thermodynamic 
quantities, for which the leading finite-size corrections in this case turn 
out (1'21) to be of order 1IV. 

6. I N F I N I T E - R A N G E  MODELS:  RESULTS 

In the preceding section we reduced the evaluation of the partition 
function of the infinite-range model to summation over M, and identified 
the leading finite-size terms: see (5.4). Here we consider the finite-size 
properties near h = 0 .  First, we note that the probability of finding the 
magnetization value M is proportional to the exponential term in the 
summand in (5.4). It shows explicitly the double-peak structure near h = 0. 
To the leading order in h and l/V, the sum in (5.4) can be evaluated by 
keeping (adding up) the two contributions from M -~ ml. 2.(b) Each one of 
these can in turn be evaluated by: (1) using the expansion (5.7); (2) turning 
the sums into integrals; (3) extending the integration to +oo. Thus, we 
have 

f o v [ ( M _ m l b ) ) 2  hM+---Tj } "  u(rnlb))l (6.t) 

As anticipated, the result comes out in the form (2.2), with I =  2, where the 
small-h and 1/V form of the free energies is 

f ~( h, V) ~- --m~b)h + u(m}b)) -- (1/2) ln(~r;~Ib)/2) 
V (6.2) 

which shows that the leading finite-V correction is indeed of order 1/V here 
[compare with (3.3)]. 

Next we introduce notation identical to (3.4), (3.5). However, we 
replace (3.6) by 

hc = he(V) ==- u(m~b)) -- u(m~b)) + (1/2) ln(g~b~/Z(2 b)) 
V(m~b) _ m~b) ) (6.3) 

The resulting expression for the free energy [compare (3.7)] reads 

f (h ,  V) " u(m~b)) + u(m~zb))- (1/2)ln(lr2;~b)z~b)/4)__ rhh 
2V 

1n{2 c o s h [ # ( h - h e )  V]} (6.4) 

For the order parameter, relation (3.8) is obtained, with hc(V ) in place of 

822/60/5-6-3 
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hc(L ). Finally, one can also check by explicit calculation that the two peaks 
of the function P(M) have equal areas exactly at h = hc(V). 

In summary, the scaling theory for nonsymmetric first-order transi- 
tions, incorporating finite-size corrections due to surfaces or other effects, 
is similar to that for the symmetric case. The main qualitative difference is 
the shift in the rounded transition, which is directly related to the single- 
phase, finite-size free energy corrections. These phenomenological observa- 
tions are fully confirmed by our exact calculations for infinite-range 
models. 
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